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LETTER TO THE EDITOR 

New approach to percolation: lattice system results 

G Stell and J S Hprye 
Departments of Mechanical Engineering and Chemistry, State University of New York, 
Stony Brook, New York 11794, USA 
Institutt for Teoretisk Fysikk, Universitetet i Trondheim, 7034 Trondheim-NTH, Norway 

Received 8 August 1985 

Abstract. Results of an integral-equation approach to pair connectedness are given for 
lattice models, with emphasis on site percolation. The lowest-order approximation is 
expressible in terms of the lattice Green function and is isomorphic to a P6lya random 
walk. It yields percolation exponents y = 2, U = 1 for d = 3 and y = 1, v = f for d 2 4, 
d =dimension. For simple hypercubic lattices it also yields usefully sharp estimates for 
the site percolation threshold probability pp. A first correction is described. 

This work is part of a more general investigation of clustering and connectivity we 
have been making that encompasses percolation and gelation (Ziff and Stell 1980, Ziff 
et a1 1984, Chiew et a1 1985, Klein and Stell 1985) and molecular and ionic association 
(Hprye and Olaussen 1980a, b, 1981, Cummings and Stell 1983, 1984). The results 
herein are based on an integral-equation approach to pair connectedness that one of 
us (Stell 1984) recently introduced to permit a general treatment of connectivity in 
lattice and continuum models. Here we apply that approach to lattice models, with 
emphasis on site percolation in simple hypercubic lattices. Our lowest-order result, 
which is of Ornstein-Zernike (oz) form, proves to be directly expressible in terms of 
lattice Green functions. The critical exponents we have evaluated in this approximation 
are y = 2, v = 1 for d = 3 and y = 1, U = $ for d 3 4, d = dimensionality. For the classic 
site percolation (SP) problem, the approximation is exact for d = 1 and exact for the 
Bethe lattice. On simple hypercubic lattices it yields a particularly useful estimate for 
pp, the occupation probability at the percolation point. Our result for pp is illuminated 
by an isomorphism we establish between the approximation and a P6lya random walk, 
which yields for the standard SP problem the relation pp= R, where R is the return 
probability of the walk. We give also an expression for the first-order correction to 
our results appropriate to both the standard SP problem and a randomly centred 
hypercube problem. 

Our general approximation scheme is applicable to any lattice but our explicit 
concern here will be the d-dimensional cubic lattice with unit spacing between nearest- 
neighbour sites such that 

(a) the sites are occupied randomly by particles with mean number density p .  Two 
adjacent sites are considered connected if each is occupied by one or more particles, 
yielding a randomly centred hypercubic (RCH) model, or 

(b) an additional constraint of no multiple occupancy of sites is further imposed, 
yielding the classic site-percolation (SP) model. 
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In considering lattice models, the pair connectedness function p2h+(  r 1 2 )  introduced 
by Coniglio et a1 (1977) and used in Coniglio and Essam (1977), De'Bell and Essam 
(1981) and Stell (1984) reduces to the lattice pair connectedness function earlier 
introduced by Essam (1973). Here p 2 h + ( r 1 2 )  dr, dr2 is the probability of finding a 
particle in the volume element dr, and another particle in the element dr2 with both 
particles joined by at least one path over connected sites. On a lattice dr, is taken to 
be the volume SZ of the Wigner-Seitz cell associated with the ith site. (We assume 
R = 1 unless otherwise noted.) We introduce here the pair connectedness direct 
correlation function via the Ornstein-Zernike (02) equation, which for a lattice can 
be written in real space as 

h+(r12) = c+(r12)+p c h+(r, t )c+(r12)  

l+( k )  = E+( &)[ 1 - pC'( & ) ] - I  

a'(&) = E  a(rj)exp(ik- r j ) ,  

c + ( r ) = O  for r >  1 (4) 

( 1 )  
I 

and in Fourier space as 

( 2 )  

(3 1 
where, for a function a ( r ) ,  

I 

In the series-union/Percus-Yevick (SU/PY) approximation considered by Stell (1984), 

in both our models. Let 

c + ( r )  = co for r = 0, c+( r )  = c ,  for r = 1, r = lrl. ( 5 )  

Then for simple cubic lattices 
d 

E'( k )  = co + 2cl  COS ki 
i = l  

where ki are the Cartesian components of k. We introduce in corresponding notation 

hi(  r )  = ha for r = 0, h+( r )  = h,  for r = 1 .  (7) 

ha = 0, h,  = 1 ,  (8) 

ha= h,  = 1 .  (9) 

Then in the SP model 

and in the RCH model 

We note that in both models (as in the continuum randomly centred sphere model 
considered by Chiew and Glandt (1983), and by Stell (1984)) the SU/PY approximation 
can equally well be regarded as a mean spherical ( MS) approximation, with c'( r )  = 0 
outside a core region in which h+( r )  is explicitly prescribed by an occupancy constraint. 

ph(  r )  to its second moment 
and z the lattice coordination number. Then Z - ' ' ~ K  = K is an inverse correlation length 
that becomes zero at the percolation point, with 1 + K 2  = (1 - p c o ) / z p c , .  In both models, 
we find 

Let K 2  be the ratio of the zeroth spatial moment of 

6 , 0 + p h + ( r )  = G ( K  r ) l p c ,  (10) 
where G ( K ,  r )  is the lattice Green function for the lattice Helmholtz equation and 
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G(0, r )  the lattice Green function for the lattice Poisson equation. For simple cubic 
lattices 

cos r e  k dk 
1 sjs z. 

( K 2  + 1) - z-‘ Xj COS kj ’ 

In earlier work, Stell (1969) obtained the basic relation 

z G ( K ,  0) = 1(1 +constant, K2+constantz Kd-2 

+constant, KdP2 In K +. . .). (11) 

Here I is a Watson integral, the constant, and constant2 are non-zero, and constant, = 0 
when and only when d is odd. The ellipsis in (11) represents terms that are always 
dominated by at least one of the exhibited terms. Letting 

G(K, r )  = Go at r = O  and G, at r = l  (12) 

ZG, = ( K ~ +  ~)zG,-  1. (13) 

p h J (  1 + pho) = [ ( K 2  + 1 )zGo - 1]/ zGo. (14) 

we can relate Go and G, through a Green function identity. For the simple cubic lattice 

From (lo), this further yields 

From this we find at the percolation point K = O  in the SP case, using (8) and ( l l ) ,  
p = (I - 1) /  I. So the percolation density pp (equivalently, the site occupancy probability 
pp) is given by 

p = pp = ( I  - l)/I. (15) 
Following the method of Stell (1969) (see also appendix of Stell 1975) we can 

immediately read off certain critical exponents. At pp, from (10) we find that the 
spatial decay of h + ( r )  for r -$ cc is like constant x r-d+2-” with 7 = O  while from (8), 
(10) and (1 1) we see that 

p = p P - A p  = I - ’ [ ( Z -  l)+constant K2+constant Kd-2  

+constant Kd-2 In K +. . .I, (16) 

so that K = O(Ap)” with U = 1 for d = 3, U = t for d = 4. Similarly, with mean cluster 
size given by 

S ( p )  = 1 + p K + ( 0 )  (17) 
we find S-’=O(K2) =O(Ap)’ so y = 2 v  and y = 2  for d =3,  y =  1 for d 2 4 .  We note 
also that for d # 4 we have pure power-law dependence of S and K on Ap as Ap + 0 
but for d = 4 there is also logarithmic dependence, Ap - K 2  In K. Corresponding 
calculations for the RCH model yield the same critical exponents. Instead of (15), 
however, we have from (9) and (14) the percolation density 

p p = I - 1  (18) 
for the RCH. The corresponding percolation probability is here given by pp= 
1 -exp(-p,). 

The following points bear comment. 
(i) From the above analyses it follows that for both models our approximation has 

the formal structure of a P6lya walk (i.e., unbiased, with nearest-neighbour step) with 
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pc’( r )  at pp corresponding to jump probability and + ph+( r )  corresponding to a 
generating function that at pp becomes the expectancy of hitting point r, starting from 
r = 0 .  (See Stell (1983) and Cummings and Stell (1983) for a discussion of random 
walks from this viewpoint.) This correspondence generates a realisable Pdlya walk 
in the case of the RCH model, where pc, = 0 and pc, > 0 at pp. In the SP case, pco < 0 
and pc, > 0, so the correspondence does not generate a realisable walk. Nevertheless 
it gives rise, through (15)  and the identity R = (I - l)/Z, to the identity 

PP’R (19) 

where R is the probability of return to the original for such a walk. Moreover we see 
that our MS approximation corresponds to a random walk structure in a way that 
generates percolation exponents for d = 3 with values considerably closer to sharp 
estimates of the exact exponents, y =  1.74, v=O.86 (Gaunt and Sykes 1983) than the 
mean-field values y =  1, v = i .  An analogous point was made by Stell (1969) in 
connection with the critical-point exponents of a lattice gas in mean-spherical type 
approximations but is even more pertinent for percolation, since for d = 3 the percola- 
tion exponents are much closer to their MS values than are the critical-point exponents. 

(ii) On a simple cubic lattice pp = R yields pp(d) = 0.341 . . . for d = 3 and pp(4) = 
0.193 . . .. Other estimates and discussions of pp(d) suggest the values pp(3) = 0.312 to 
within 1 %  and pp(4)=0.197 to within 3%. Thus our pp(4) appears competitive with 
the best available results. For larger d, we analyse our approximation using the method 
suggested by Gaunt and Brak (1984) to test such results. We compare the expansion 
of R in U - ’ ,  (+ = 2d - 1 ,  with that of pp (Gaunt et a1 1976) and find (pp- R ) / p p =  
( 2 ~ ) - ’ + O ( a - ~ ) .  Together with our analysis for d = 3 and 4 this supports pp> R for 
d 2 4, pp < R for d S 3, and shows that the inequality R > pp proposed by Ishioka and 
Koiwa (1978) for all d is without support. 

(iii) For d = 1,  our SP result yields 

&, ,+ph+(r )  = pr,  

1 + p?(k )  = ( 1  - p 2 ) / [  1 - 2p cos k + p 2 ] ,  

so from (15 )  

These are exact results. Our approximation is also exact for SP on a Bethe lattice, 
where (19) and (20) continue to hold with r now equal to path length from origin. 
For p < pp= (z  - l ) - ’ ,  S ( p )  from (20) through (15)  immediately generalises to the exact 
result 

s ( P ) = ( l + P ) / [ l - ( z - l ) p l .  (23) 

(We ., defer further discussion of the Bethe-lattice results to a less space-restricted 
treatment elsewhere.) 

(iv) For the RCH, we have from (18) pp(3) = 0.403 . . . and pp(4) = 0.213 . . . but we 
do not expect these values to approach the accuracy of our simple cubic SP results, 
on the basis of a detailed ongoing quantitative study of the continuum analogue of 
the RCH by Chiew and Stell. On the basis of that study, however, we expect the RCH 
p p ( d )  obtained from the first correction given by (27) below to be highly accurate. 
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(v) In Stell (1984) the correction to the SU/PY result for c + ( r )  was given through 
order p2. For our SP and RCH models one has, from equations (9) and (10) of Stell 
(1984), 

c+( r )  = d + (  r )  for r > 1, (24) 

d + ( r )  = p2d: '2 '+O(p3)  (25) 

where 

with d:'2' given by the right-hand side of (11) of Stell (1984). In the SP model, 
hole-particle symmetry implies that d+(  r )  is invariant under the mapping p + -p ,  so 
that p(  1 - p )  rather than p is a natural expansion parameter. Here pa can be equally 
well identified as occupation probability p or volume fraction 4 of occupied lattice 
cells with cell volume a. Thus the approximant of d + ( r )  that is suggested by symmetry 
is 

d + ( r )  = 42(1  - 4 ) 2 d : ( 2 ) .  (26) 

In the RCH case, hole-particle symmetry is lost, and 4 is the natural parameter of 
smallness (where now 4 = p = 1 - e-p*). Hence 

d + ( r )  = 42d:(2)  (27) 

is an appropriate form, with the further simplification that d:'2' in the RCH case is 
given by the right-hand side of (18) of Stell (1984). 

(vi) Since the standard bond percolation problem on a regular lattice can be 
transformed into an equivalent site percolation problem on an associated covering 
lattice, our method is applicable to bond percolation problems as well. This transforma- 
tion will yield results in terms of the lattice Green function of the covering lattice. An 
intriguing question is whether an alternative mapping exists that will yield oz bond 
percolation results directly in terms of the Green function of the primary lattice, 
permitting contact with observations of Sahimi et a1 (1983). 

GS gratefully acknowledges support of the National Science Foundation and a Fellow- 
ship from the John Simon Guggenheim Memorial Foundation. He is indebted to 
David Gaunt for calling our attention to the relevance of the analyses of Gaunt and 
Brak (1984) to our work and to Yee Chiew and William Klein for stimulating conversa- 
tions. 
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